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ABSTRACT 

We introduce continued fractions and an algorithm to find the continued fractions of rational 
numbers, and use it to solve linear diophantine equations. Then we introduce an algorithm for 
finding continued fractions of square roots and use it to investigate solutions to Pell’s equation, 
a quadratic diophantine equation. Finally, we attempt to translate these systems to other higher 
order diophantine equations, with a cubic diophantine equation. We use a java program (that I 
wrote) to find the continued fractions after introducing the algorithms.



PROBLEM STATEMENT 

 A continued fraction is a representation of a number x in the form shown in figure 1, 

with integers a0, a1, … and b1, b2, ….1 In this paper, we will be specifically working with simple 

continued fractions, which only have numerators of 1, as generalized in figure 2. 

!

A continued fraction can also be written in the notation [a0; a1, a2, a3, ..], which is 

equivalent to the continued fraction in figure 2.1 For example, the continued fraction [2; 1, 3, 5] 

written in fraction notation would be equivalent to 2 + 1/(1 + 1/(3 + 1/5)). 

The continued fraction of a rational number can be calculated exactly. If the number is 

irrational, however, the continued fraction representation will be must be approximated, because 

the decimal notation of the number is infinite. Continued fractions are used to approximate 

irrational numbers because of this, but they will never be exact. (Continued fraction expansion 

was used to approximate pi as 22/7.) 

To calculate the continued fraction of a number, first write the fraction as a mixed 

number. We will use 127/49 in this example. Therefore, this number becomes 2 + 29/49. Next, 

the fractional part of the number is written as one divided by its reciprocal. We can do this 

because finding a reciprocal is the same as dividing 1 by the number, therefore dividing 1 by the 

number twice is equivalent to the original number. Doing this, we are left with 2 + 1/(49/29). By 

repeating these two steps for every improper fraction we are left with, we can find the continued 

Figures 1 and 2. Two generalizations of the continued fraction representation of a number. 
(http://mathworld.wolfram.com/ContinuedFraction.html)
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fraction representation of the number. Doing this, as shown in figure 3, we find that the 

continued fraction of 127/49 is equal to  [2; 1, 1, 2, 4, 1, 1]. 

!

The convergents of a continued fraction occur when the continued fraction is 

approximated.1 In a continued fraction [a0; a1, a2, a3,…], the nth convergent is the value of the 

fraction from a0 to an. In the continued fraction of 127/49, for example, the 3rd convergent is 

equal to [2; 1, 1], and the remaining terms of the fraction are neglected. The value of the 3rd 

convergent would be equal to 2+1/(1+1/(1)), or 5/2. Clearly, this convergent is a rough estimate 

of the original fraction 127/49.  

By increasing the term of convergency, the approximation becomes closer to the original 

number. The first convergent of  the continued fraction of 127/49 is 2, which is very far from the 

actual value of 2.59184, but the sixth convergent, 70/27 or 2.59259, is clearly much closer to the 

actual value. 

Continued fractions can be used to find solutions of certain types of diophantine 

equations. Diophantine equations are polynomial equations with two or more unknown 

variables, in which the only solutions are in the set of integers.2 Linear diophantine equations in 

the form ax + by = c, with integers a, b, and c can be solved using continued fractions. 

If these coefficients a and b of a linear diophantine equation were turned into the fraction 

a/b, the fraction could be rewritten as a continued fraction. For example, with coefficients 47 and 

Figure 3. The continued fraction expansion of 127/49
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28 (and c = 1), 47/28 becomes the continued fraction [1; 1, 2, 9]. The convergents of this 

continued fraction written as fractions would then be used to find solutions. Not all of the 

convergents lead to solutions, however. Each solution must be tested until a solution is found. 

 In the case of this equation, the third convergent, 5/3, offers a solution to the original 

diophantine equation, 47x + 28y = 1. Clearly the fraction itself is not the solution, because we 

are searching for integer solutions only. The numerator and denominator of the fraction is used 

and the numbers can be negated if both coefficients are positive or negative. The solution (3, -5) 

or (-3, 5) could then be used to generate more integer solutions by using the slope of the 

equations. 

 Continued fractions can also be applied to solving non-linear diophantine equations. 

Pell’s equation is a non-linear diophantine equation of the form x2 - ny2 = c, with n as an integer 

that is not a square, and c as an integer3,4. A similar continued fraction procedure can be done to 

find solutions of this equation, which will be explored in another section of this paper.  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RELATED RESEARCH 

a. Algorithm for Generating Continued Fractions of Rational Numbers

As discussed earlier, there is a simple method for generating the continued fraction 

representation of a number. This method can be applied to finding approximations of irrational 

numbers as well, by rounding them to rational numbers. In figure 4, there is a flowchart of the 

algorithm used to find the continued fraction of a number. 

!

Using this algorithm, we can write a computer program that can generate continued 

fractions of rational numbers. In java, a do-while loop that repeats iterations until the numerator 

equals 1 is able to do this to generate the continued fraction of a rational number. 

Write the number as an 
improper fraction

Subtract this integer 
quotient from the fraction

Find the quotient of the 
numerator and denominator, 

truncate the decimal, and 
record this integer

Take the reciprocal of the 
remaining fraction

if numerator does 
not equal 1

Use each of the collected 
integers to write a simple 

continued fraction

if numerator equals 1

Figure 4. Algorithm for generating continued fractions of rational numbers.

!4



b. Algorithm for Generating Continued Fractions of Square Root Numbers 

 Generating continued fractions of square roots of numbers is slightly different from the 

algorithm in figure 4. We will specifically be dealing with irrational numbers with square roots in 

this algorithm. The continued fractions of square roots of numbers always converge at a 

repeating section of their continued fraction. The algorithm, shown in figure 5, can be used to 

find the continued fraction representation of any simple square root, such as       , which becomes 

!  

Lets use this algorithm to find the continued fraction of √19. First, take out the largest whole 

number from the square root, and add and subtract it from each side. 

!  

Input the number n

Multiply the expression in 
parentheses by its conjugate:

Find the largest whole number 
from the square root, and add 

and subtract it to get: 

Take the reciprocal of the 
remaining fraction

if the continued 
fraction does not 
repeat

Use each of the collected 
integers c to write a simple 

repeating continued fraction

if the c’s form a repeating sequence

Figure 5. Algorithm for generating continued fractions of square roots of numbers.
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Next, multiply by the conjugate of the expression in parentheses. 

!

Simplify. 

!

Take the reciprocal of the fraction. 

!

Find and take out the largest whole number from the fraction. 

!

Simplify. 

!

Multiply by the conjugate. 

!

Simplify and take the reciprocal of the fraction. 

!

As this algorithm progresses, it eventually converges at ! . This 

algorithm can also be translated into a computer program, although a more complex one than the 

simpler algorithm for rational continued fractions. 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c. Convergents of a Continued Fraction

In this section, we will derive a formula for the convergents of a continued fraction. To do 

this, we will use induction. Let’s start with the simple continued fraction [a0; a1, a2, a3, a4,…. ax]. 

A convergent of a continued fraction occurs when the value of the fraction is calculated from a0 

to an, when n is between 0 and x.  Therefore, we can define the nth convergent as  , in which pn 

and qn are the numerator and denominator of the convergent, respectively. 

For n = 1, we have [a0; a1]. 

!

Combine. 

!

Now, let’s repeat this for n =  2. 

!

If we repeat this process for the first six convergents, we can make a chart of n, pn, and qn. 

! Table 1. pn and qn for the first six convergents of a continued fraction.

n pn qn

0 ao 1

1 a1a0 + 1 a1

2 a2a1a0 + a2 + a0 a2a1 + 1

3 a3a2a1a0 + a3a2 + a3a0 + a1a0 + 1 a3a2a1 + a3 + a1

4 a4a3a2a1a0 + a4a3a2 + a4a3a0 + a4a1a0 + a4 + a2 + a0 a4a3a2a1 + a4a3 + a4a1 + a2a1 + 1

5 a5a4a3a2a1a0 + a5a4a3a2 + a5a4a3a0 + a5a4a1a0 + 
a5a2a1a0 + a3a2a1a0 + a5a4 + a3a0 + a1a0 + 1

a5a4a3a2a1 + a5a4a3 + a5a4a1 + a5a2a1 + a5 + a3 + 
a1
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With these values in table 1, we can already notice a pattern. Every pn and pn-2, and qn and 

qn-2 share similar terms. First, let’s subtract these terms for the numerators, as shown in figure 6, 

to try to find a more concrete pattern. 

!

Based on figure 6, it appears that pn - pn-2 = an pn-1. By subtracting pn from both sides, we 

find that pn = an pn-1 + pn-2. To find qn, we can perform a similar procedure to find that the 

formula seems to be qn = an qn-1 + qn-2. However, we have not proved this formula yet. 

The first step of a proof by induction is to prove that the formula works for n = 1. We 

already know that the first convergent of the continued fraction [a0; a1, a2, a3, a4,…, ax] is equal to 

, and since p0 = a0, p-1 = 1, q0 = 1, and q-1 = 0, this is equal to the formula that we 

are trying to prove by substitution. 

Next we assume our formula is true for n = k. 

!

Figure 6. Subtracting pn-2 from pn.6

p2 − p0 = a2a1a0 + a2 = a2(a1a0 + 1)    = a2p1 

p3 − p1 = a3a2a1a0 + a3a2 + a3a0  

= a3(a2a1a0 + a2 + a0)    = a3p2 

p4 − p2 = a4a3a2a1a0 + a4a3a2 + a4a3a0 + a4a1a0 + a4  

= a4(a3a2a1a0 + a3a2 + a3a0 + a1a0 + 1). = a4p3 
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Finally, we show that the formula holds true for n = k + 1. Since  

[a0; a1, a2, a3, a4,…, ak, ak+1] = [a0; a1, a2, a3, a4,…, ak + ak+1-1], 

we can show that the formula is true by using this to substitute ak + ak+1-1 for ak+1. 

!

Multiply by an+1 and distribute. 

!

Factor out a an+1. 

!

Substitute pk and qk because pn = an pn-1 + pn-2 and qn = an qn-1 + qn-2. 

!

Therefore, this formula finds the nth convergent of any continued fraction, because we 

proved that the formula works for n = 1 and every integer after n = 1. 

d. Solving Pell’s Equation

Pell’s equation is a non-linear diophantine equation of the form x2 - ny2 = c, with n as a 

non-square integer and c as an integer3,4. For example, the equation x2 - 4y2 = 1 is not a form of 

Pell’s equation because 4 is a square. This restriction is applied because integer solutions would 

be simple to find by simply factoring the equation. In this section, we will be exploring forms of 

Pell’s equation with c = 1. 
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Solving Pell’s equation with continued fractions is very similar to solving linear 

diophantine equations, which we briefly explored earlier. The first step is to find the continued 

fraction of the square root of n, the coefficient of the y2 term. Next, we will test the convergents 

of this repeating continued fraction to find solutions of the equation. 

Lets start by exploring the equation x2 - 7y2 = 1. To find solutions, we will first use the 

algorithm to find the continued fraction of √7.  After applying the algorithm, we find that √17 = 

[2; 1, 1, 1, 4]. 

Next, we need to find the convergents of the continued fraction and test for solutions. 

However, rather than evaluating each convergent by hand each time, which can become time 

consuming, we can use the formula that we just derived, shown in figure 7, to find the 

convergents, in which pn and qn are the numerator and denominator of the nth term, respectively, 

and an is the nth term of the continued fraction5. 

We can use this equation to find the first few convergents of this continued fraction, to 

test solutions. Table 2 shows the first 5 convergents of the continued fraction of √7, and the 

results of tests for solutions. 

As shown in Table 2, the solutions of the equation x2 - 7y2 = 1 were in the fourth 

convergent.  We were able to negate the x and y coordinates because since each of the numbers is 

being squared, the negatives have no effect on the results of the equation. 
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Figure 7. Formula for the convergents of a continued fraction.



 

 We were able to solve linear diophantine equations and Pell’s equation using continued 

fractions, so perhaps we can solve higher order diophantine equations using a similar algorithm. 

Lets try this with a cubic equation, in a similar form to Pell’s equation, x3 - ny3 = 1, where n is 

any non-cube integer. Lets try this with x3 - 7y3 = 1.  

 First, we must find the continued fraction of the coefficient. However, instead of using 

the square root like we did when solving Pell’s equation, we must use the cube root of n, because 

it is a cubic equation. However, we do not have an algorithm for cube root irrationals; only 

square roots, so we must first investigate this. 

n Convergent Solution (x, y)

1 no

2 no

3 no

4 yes (8,3), (-8, -3), (-8,3), (8, -3)

5 no

"

�

"

"

"
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e. Investigating Cube Root Continued Fractions 

 Let’s attempt to find the continued fraction of, for example, cube root of 2 by using our 

algorithm for square roots of integers. 

First, lets take out the greatest whole number from the cube root. 

!  

Multiply by the conjugate of the expression in parentheses. 

!  

Distribute and simplify. 

!  

 This method does not appear to be able to generate a continued fraction for a cube root 

expression, because we are left with radicals in both the numerator and denominator. This is 

because multiplying the conjugate of a cube root expression does remove the radical in this 

situation. There is nothing that we can multiply in this situation to remove the cube root from the 

numerator of the expression. 

 We can try to approximate the cube root of n using a decimal approximation of the value, 

being that we are unable to determine the exact value. To do this, we can use an accurate decimal 

approximation of, as in our example, the cube root of 2. Because of the java program that we 

wrote for the algorithm for finding continued fractions of rational numbers, we can use a long, 

and therefore more accurate, decimal approximation of the number. Since our algorithm is for 
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fractions, we simply need to turn the decimal into a fraction, by dividing the decimal by its order 

of magnitude. After inputing this into the program, we find that: 

!

However, this continued fraction does not appear to repeat or even begin to converge at a 

repeating series. Furthermore, even though we used a very accurate decimal approximation, we 

should not look at the last half of the continued fraction, because the small changes led to a larger 

inaccuracy. To see this clearer, we can compare the exact continued fraction of a square root and 

an approximation of the same number. The exact continued fraction of √19, for example, is 

! , but using the decimal approximation, it is 4.3588989 = [ 4; 2, 1, 3, 1, 2, 8, 2, 

1, 4, 1, 2, 1, 9, 1, 3, 1, 3, 2], which is only accurate for the first 9 digits before becoming garbled. 

However, there is a solution to Pell’s equation with n = 19 in these first few numbers, so it is 

possible that there is a solution in the early convergents of the cubic approximation. 

f. Attempting to use Approximated Continued Fractions to Solve Cubic Diophantine Equations

Despite the inaccuracy of the end of our continued fraction of the cube root of 2, we can 

try to use its convergents to find solutions to our cubic diophantine equation, x3 - 7y3 = 1, to find 

integer solutions. The approximate continued fraction of an the cube root of 7 is: 

!

We find the convergents using our formula, and then test each in the equation, shown in table 3. 
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 Based on table 3, the continued fraction for the cube root of 7 generated a solution to our 

cubic diophantine equation, x3 - 7y3 = 1, at (2, 1). Once we reached higher convergents, the 

inaccuracy due to the approximation of our continued fraction shows, as the tests in the equation 

become increasingly farther from the desired value of 1.  

n Convergent Test Solution (x, y)

1 13 - 7(1)3 = -6 no

2 23 - 7(1)3 = 1 yes (2,1)

3 213 - 7(11)3 = -56 no

4 443 - 7(23)3 = 15 no

5 7253 - 7(379)3 = -1448 no

6 14943 - 7(781)3 = 4997 no

7 22193 - 7(1160)3 = -2541 no

�

�

�

"

�

�

�
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Table 3. Testing for solutions of x3 - 7y3 = 1



CONCLUSION 

We used continued fractions to  

• solve linear diophantine equations,

• Pell’s equation, and

• investigated other higher order diophantine equations

Higher order diophantine equations should be investigated further with  

• the use of continued fractions to solve equations with degrees higher than three and

• an algorithm for finding continued fractions of irrational numbers such as cube roots should

be investigated 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